Targeted killing of myofibroblasts by biosurfactant di-rhamnolipid suggests a therapy against scar formation
نویسندگان
چکیده
Pathological myofibroblasts are often involved in skin scarring via generating contractile force and over-expressing collagen fibers, but no compound has been found to inhibit the myofibroblasts without showing severe toxicity to surrounding physiological cells. Here we report that di-rhamnolipid, a biosurfactant secreted by Pseudomonas aeruginosa, showed potent effects on scar therapy via a unique mechanism of targeted killing the myofibroblasts. In cell culture, the fibroblasts-derived myofibroblasts were more sensitive to di-rhamnolipid toxicity than fibroblasts at a concentration-dependent manner, and could be completely inhibited of their specific functions including α-SMA expression and collagen secretion/contraction. The anti-fibrotic function of di-rhamnolipid was further verified in rabbit ear hypertrophic scar models by presenting the significant reduction of scar elevation index, type I collagen fibers and α-SMA expression. In this regard, di-rhamnolipid treatment could be suggested as a therapy against skin scarring.
منابع مشابه
Experimental investigations of behaviour of rhamnolipid biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles
Use of biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles (AuNPs) is now emerging as nontoxic and environmentally acceptable "green chemistry" procedures. Stability of AuNPs at different pHs is very important because our body has different pHs. This paper addresses this issue. In this work, first P. aeruginosa PTCC 13401 was used to produce rhamnolipid biosu...
متن کاملRemediation of Chromium-Contaminated Soils Using Pseudomonas aeruginosa Strain BS2
The bioremediation of chromium-contaminated soil by a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 has been explored through column studies using uncontaminated soil spiked with toxic concentrations of heavy metals i.e. 1000 mg/kg chromium. Results on removal of chromium from the spiked soil by using di-rhamnolipid and tap water have shown a high potential of di-rhamn...
متن کاملCommentary: Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3
Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid wa...
متن کاملImproved removal of Trinitrotoluene (TNT) from contaminated soil by inducing aerobic process: kinetic and chemical byproducts
This study describes the biological degradation of TNT by using induced aeration. Three plastic reactors were used. In each reactor 3 kg of soil were used. In order to increase the porosity of the soil, sawdust was added to soil. Textile wastewater treatment plant sludge was also added to soil. TNT at the concentrations of 1000 mg/kg of soil was added thereafter. Rhamnolipid biosurfactant at th...
متن کاملBioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
In this work, biosurfactant production by a Pseudomonas aeruginosa strain was optimized using low-cost substrates. The highest biosurfactant production (3.2 g/l) was obtained using a culture medium containing corn steep liquor (10% (v/v)) and molasses (10% (w/v)). The biosurfactant reduced the surface tension of water up to 30 mN/m, and exhibited a high emulsifying activity (E24=60%), with a cr...
متن کامل